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Recap on Multidimensional Scaling



The problem of multidimensional scaling


0 δ1,2 · · · δ1,n
δ2,1 0 · · · δ2,n
...

...
. . .

...
δn,1 δn,2 · · · 0



Given a weighted graph (V, E , δ) and embedding dimension d, find y1, . . . , yn ∈
Rd such that

∥yi − yj∥ ≈ δij

for all (or most) (i, j) ∈ E .
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Classical Scaling

The main method for MDS is classical scaling (CS).

CS requires that all the dissimilarities be available, meaning, that the graph be

complete.

In that case, the input data can be gathered in a dissimilarity matrix

∆ :=


δ1,1 δ1,2 · · · δ1,n

δ2,1 δ2,2 · · · δ2,n
...

... · · ·
...

δn,1 δn,2 · · · δn,n

 ∈ Rn×n
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Classical Scaling

Step 1: Double-centering the matrix of squared dissimilarities

Form the matrix

∆c
2 = −1

2H∆◦2H, where H = In×n − 1
n11

⊤

Step 2: Eigendecomposition

Let λ1 ≥ · · · ≥ λd be the top d eigenvalues and u1, . . . , ud be corresponding unit

eigenvectors of ∆c
2

Step 3: Embedding

Form the output matrix

YCS :=
(√

max(λ1, 0)u1 | · · · |
√
max(λd, 0) ud

)
∈ Rn×d
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CS on a realizable graph

The graph (V, E , δ) is realizable in dimension p when there are some x1, . . . , xn ∈ Rd

such that δij = ∥xi − xj∥ for all (i, j) ∈ E .

Consider the Euclidean case and let x1, . . . , xn be a centered (w.l.o.g.) realizing point

set, so that

δij = ∥xi − xj∥ and Ex[x] :=
1
n

∑
i xi = 0.

In that case, the key idea is to convert the dissimilarities (here Euclidean distances)

into inner products to obtain a Gram matrix.
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Double centering ≡ Transformation into Gram matrix

When (V, E , δ) is realizable in dimension p through centered point cloud

X = (x1| · · · |xn)⊤ ∈ Rn×p,

polarization yields

⟨xi, xj⟩ = −1

2
(δ2ij − ⟨xi, xi⟩ − ⟨xj , xj⟩)

= −1

2

(
δ2ij −

1

n

∑
l

δ2il −
1

n

∑
k

δ2kj +
1

n2

∑
k

∑
l

δ2kl

)
.

Hence, the matrix form of the above is

XX⊤ = −1
2H∆◦2H,

so the doubly centered matrix is the Gram matrix of X.
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Matrix Form for Classical Scaling

Write X = USV ⊤ for the singular value decomposition of X ∈ Rn×p:

� U = (u1| · · · |un) ∈ Rn×n is orthogonal (U⊤U = UU⊤ = Ip)

� S ∈ Rn×p is diagonal (entries µ1 ≥ . . . µmin{n,p} ≥ 0)

� V = (v1| · · · |vp) ∈ Rp×p is orthogonal (V ⊤V = V V ⊤ = Ip)

With these notation,

XX⊤ = USS⊤U⊤.

Hence, the output of classical scaling writes as

YCS =
(
µ1u1 | · · · | µdud

)
= US∗,[d],

where S∗,[d] := S

(
Id×d

0(p−d)×d

)
∈ Rn×d is the first d columns of S.
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Dimensionality Reduction

Given points x1, . . . , xn ∈ Rp and embedding dimension d, find y1, . . . , yn ∈ Rd

such that

∥yi − yj∥ ≈ ∥xi − xj∥

for all (or most) i, j ∈ {1, . . . , n}.
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Dimensionality Reduction

Motivations

� Computational challenges (time complexity)

� Generalization ability (curse of dimensionality)

� Data interpretation (meaningful structure, visualization)

Wilderness

Figure 1: from Van Der Maaten, Postma, Herik, et al. 2009
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Random Projections



Johnson Lindenstrauss

Define the distortion of an embedding Rn×n ∋ ∆ 7→ Y ∈ Rn×d as

distorsion(∆ | Y ) := max
i ̸=j

δij ∨ ∥yi − yj∥
δij ∧ ∥yi − yj∥

.

Recall the following embeddability result.

Theorem (Bourgain 1985)

There exists a universal constant C > 0 such that any finite metric space of

cardinality n can be embedded into (Rd, ∥ · ∥2) with d ≤ C log n and with distortion

at most C log n.

A simple adaptation of his arguments show that the same is true for (Rd, ∥ · ∥p), this time with

d ≤ C(logn)2 (Matoušek 2013).
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Theorem (Johnson and Lindenstrauss 1984)

Let X ⊂ Rp be a finite point cloud with |X | = n, and A ∈ Rd×p be a random matrix

with entries (Ai,j)i≤p
j≤d

are iid N (0, 1/d). If d ≥ 16ε−2 log(n/
√
t), then with

probability at least 1− t, for all x, x′ ∈ X ,

(1− ε)∥x− x′∥22 ≤ ∥Ax−Ax′∥22 ≤ (1 + ε)∥x− x′∥22.

The embedding Rp ∋ x 7→ Ax ∈ Rd is an ε-isometry on X .

The requirement on the reduced dimension d to be

d ≳ ε−2 log(n/
√
t)

does not depend on the original dimension p.
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Proof outline for Johnson Lindenstrauss

� For all Q ∈ O(Rd), AQ has the same distribution as A. Hence, if ∥x∥ = 1,

Ax ∼ Ae1 = (A1,1A2,1 · · ·Ad,1)
⊤.

� On average, A is an exact isometry, in the sense that

∀x ∈ Rp, E
[
∥Ax∥22

]
= E

[
d∑

i=1

A2
i,1

]
∥x∥22 = ∥x∥22.

In fact, if x ̸= 0, one has
∥Ax∥22
∥x∥22

∼ χ2
d.

� If Z ∼ χ2
d, then P (|Z/d− 1| > t) ≤ 2 exp(−dt2/8) .
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Recovery from Random Projections

Johnson-Lindenstrauss’ lemma is related to compressed sensing.

Theorem (Shalev-Shwartz and Ben-David 2014, Theorem 23.7)

If ε < 2/5 and s < p, then with high probability, for all x ∈ Rp such that ∥x∥0 ≤ s,

x ∈ argmin
u∈Rp

Au=Ax

∥u∥1,

where ∥x∥0 :=
∑p

k=1 1x(k) ̸=0 and ∥u∥1 :=
∑p

k=1 |u
(k)|.
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Refinements of Johnson Lindenstrauss

� A fully-fledged line of research studies ways to construct A and to compute Ax

faster than O(pd), by including:

� specific product structure (Ailon and Chazelle 2006)

� sparsity (Garivier and Pilliat 2024; Kane and Nelson 2014)

� tensor structure (Kasiviswanathan et al. 2010)

� Refined analyses when X lies on a manifold:

� General upper and lower bounds in Iwen, Tavakoli, and Schmidt 2021 and Eftekhari

and Wakin 2015

� Accelerated versions in Iwen, Schmidt, and Tavakoli 2021
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Coding and Decoding

What low-dimensional structure “best approximates” the data X = {x1, . . . , xn}?

Consider the square loss ∥ · ∥22, and the generic reconstruction error

Ecodec := Ex

[
∥x− dec(cod(x))∥22

]
,

where

cod : Rp → Rd and dec : Rd → Rp

This formulation suggests

� The existence of latent variables y = cod(x) of low dimension.

� Otherwise, a lossy compression of the signal x1, . . . , xn ∈ Rp.
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Principal Component Analysis



Principal Component Analysis

Choosing linear maps as encoders and decoders leads to Principal Component Analysis

(PCA).

This foundational approach dates back to Pearson 1901. Here,

cod : Rp ∋ x 7→ Ax ∈ Rd and dec : Rd ∋ x → Bx ∈ Rp,

where x ∈ Rp is a column vector, A ∈ Rd×p and B ∈ Rp×d.

We are brought to the minimization problem

EPCA = min
A∈Rd×p,B∈Rp×d

Ex∥x−BAx∥22.

For simplicity, we assume that Ex[x] = 0.
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min
A∈Rd×p,B∈Rp×d

Ex∥x−BAx∥22 min
A∈Rd×p,B∈Rp×d

∥X⊤ −BAX⊤∥2F.

Lemma

If p ≥ d, then there exists B ∈ Rp×d such that B⊤B = Id×d and (A,B) = (B⊤, B)

is solution.

BA = BB⊤ ∈ Rp×p is a d-dimensional orthogonal projection.

Figure 2: PCA vs linear regression (Hastie and Stuetzle 1989)
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PCA vs Linear Regression

Figure 3: PCA and linear regression applied on the same dataset.
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Reformulating PCA

For all B ∈ Rp×d such that B⊤B = Id×d,

Ex

[
∥x−BB⊤x∥22

]
= Ex

[
x⊤x− 2x⊤BB⊤x+ x⊤BB⊤BB⊤x

]
= Ex[x

⊤x]− Ex

[
x⊤BB⊤x

]
= Ex[x

⊤x]− Ex

[
Tr(x⊤BB⊤x)

]
= Ex[x

⊤x]− Tr
(
B⊤Ex[xx

⊤]B
)
.

18



Output of PCA

PCA amounts to the optimization problem

max
B∈Rp×d

B⊤B=Id×d

Tr
(
B⊤Ex[xx

⊤]B
)
.

Writing X := (x1| · · · |xn)⊤ ∈ Rn×p, we recognize covariance matrix

Ex[xx
⊤] = X⊤X,

The optimizer B = V∗,[d] = (v1| · · · |vd) ∈ Rp×d is the matrix of (normalized) top

eigenvectors of X⊤X.

The dimension-reduced data is then given by

YPCA = XV∗,[d].

(i.e. optimal coding is codPCA : x 7→ V ⊤
∗,[d]x)
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Matrix Form for Principal Component Analysis

Write X = USV ⊤ for a singular value decomposition of X ∈ Rn×p:

� U = (u1| · · · |un) ∈ Rn×n is orthogonal (U⊤U = UU⊤ = Ip)

� S ∈ Rn×p is diagonal (entries µ1 ≥ . . . µmin{n,p} ≥ 0)

� V = (v1| · · · |vp) ∈ Rp×p is orthogonal (V ⊤V = V V ⊤ = Ip)

With these notation,

X⊤X = V S⊤SV ⊤.

Hence, the output of principal component analysis writes as

YPCA = XV∗,[d],

where V∗,[d] := V

(
Id×d

0(p−d)×d

)
∈ Rp×d is the first d columns of V .
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PCA vs CS

Classical Scaling with δi,j = ∥xi − xj∥2 works with the Gram matrix XX⊤ of data,

and outputs

YCS = US∗,[d] = US

(
Id×d

0(p−d)×d

)
.

Principal Component Analysis works with the covariance matrix X⊤X of data, and

outputs reduced variables

YPCA = XV∗,[d] = USV ⊤V

(
Id×d

0(p−d)×d

)
= US

(
Id×d

0(p−d)×d

)
.

Classical Scaling computed with δi,j = ∥xi − xj∥2
⇔

Principal Component Analysis
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Principal Component Analysis can be defined via the optimization of the:

� reconstruction error (Pearson 1901)

� variance preservation

� distance preservation

� decorrelation

From the calculations above, the optimal reconstruction error is

EPCA =

p∑
k=p−d+1

λk.

Other names in other fields

� Principal component analysis (statistics)

� Karhunen–Loève decomposition (stochastic processes)

� Proper orthogonal decomposition (mechanics)

� Truncated Schmidt decomposition / SVD (signal processing)
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Exact Recovery

PCA allows exact recovery if (equivalently)

� dim(Span(x1, . . . , xn)) ≤ d, or

� xi = Byi for some B ∈ Rp×d and y1, . . . , yn ∈ Rd.

PCA vs JL

They have both specific recovery properties.

PCA guarantees exact recovery whenever the variables x1, . . . , xn lie in a d-plane of Rp,

Random projections guarantee exact recovery whenever the original data is sparse (in a

given orthogonal basis).
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Axes Interpretation for PCA

The columns of YPCA = (Y (1)| · · · |Y (d)) ∈ Rn×d can be interpreted based on those of

X = (X(1)| · · · |X(p)) ∈ Rn×p through a correlation circle.

For all k ∈ {1, . . . , p} and ℓ ∈ {1, . . . , d}, write

Corr(X(k), Y (ℓ)) :=
⟨X(k), Y (ℓ)⟩
∥X(k)∥∥Y (ℓ)∥

.

Each initial feature k ∈ {1, . . . , p} can then be represented through the d-dimensional

vector

C(k) :=
(
Corr(X(k), Y (ℓ))

)
ℓ≤d

,

which lies in the unit ball of Rd.
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Iris dataset

To python!
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Iris dataset

To python!
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Iris PCA axes
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Sparse PCA
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Limitations of PCA

Latent variables

Observed variables x

PCA output y

Figure 4: from Lee and Verleysen 2007
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Nonlinear Dimension Reduction via

Multidimensional Scaling



Towards Nonlinearity

Dimensionality should try to unroll the curve.

Figure 5: from Lee and Verleysen 2007
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Only Trust Short Distances!

To unroll, we can try to mimic geodesic distances.

Figure 6: from Lee and Verleysen 2007
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Isomap

Isomap stands for isometric feature mapping.

It originates from Tenenbaum 1997, for image data.

The idea is to use graph distances as an approximation of the geodesic distances.

Reminiscent of MDS-Diagram (Kruskal and Seery 1980)

31



Isomap

We presented a variant of the original (Tenenbaum 1997).

Step 1: Graph

Construct the r-neighborhood graph (V = {1, . . . , n}, E , δ) of x1, . . . , xn ∈ Rp:

(xi, xj) ∈ E ⇔ δi,j := ∥xi − xj∥2 ≤ r

Step 2: Manifold distance measure

Augment it to the complete graph (V, Ē =
(
n
2

)
, δ̄), with

δ̄i,j := d(V,E,δ)(i, j).

Step 3: Isometric Euclidean embedding

Apply classiscal scaling to (V, Ē , δ̄).
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(
n
2

)
, δ̄), with

δ̄i,j := d(V,E,δ)(i, j).

Step 3: Isometric Euclidean embedding

Apply classiscal scaling to (V, Ē , δ̄).
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Fifty Shapes of Isomap

Building the weight matrix can be done

� Starting from a r-neighborhood graph

� Using k-nearest neighbors, oriented or non-oriented

� Plugging any other geodesic distance estimator

The embedding can be done using

� Other losses than the stress

� Incremental approaches
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Isomap Examples

Figure 7: from Tenenbaum, Silva, and Langford 2000. Here, p = 64× 64, n = 698 and k = 6.
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Isomap Examples

Figure 7: from Tenenbaum, Silva, and Langford 2000. p = 64× 64, n = 2000 and k = 6.
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Applications of Isomap

Interpolations in the embedding space along straight lines.

Figure 8: from Tenenbaum, Silva, and Langford 2000.

In the ambient (image) space, this yields highly non-linear curve.
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Isomap Strengths & Weaknesses

Strengths inherited from Classical Scaling

� Polynomial time algorithm

� No local optima

� Non-iterative

� Indicator for intrinsic dimensionality estimate

Isomap has a bandwidth parameter

� Neighborhood size r or k

Isomap cannot handle “non-convex” manifolds (i.e. with holes)
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When can Isomap work without distortion?

When data lies on a d-submanifold M isometric to a convex. Indeed,

� Classical Scaling returns a lossless embedding only if there exists Y ⊂ Rd such

that δ̄i,j = ∥yi − yj∥2 for all i, j.

� In the limit r → 0 and n → ∞, we expect that the graph shortest-path distance

δ̄i,j will converge to the geodesic distance dM (xi, xj) over M .

In the limit, this leads to the existence of a chart cod : M → Ω ⊂ Rd such that for all

x, x′ ∈ M ,

dM (x, x′) = ∥cod(x)− cod(x′)∥2.

When Ω is not convex, Isomap can be biased.

(think of M = Ω being an annulus)
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(think of M = Ω being an annulus)
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Isometry-to-Convex

Definition

We say that M ⊂ Rp is isometric to a convex if there exists

� a convex domain Ω ⊂ Rd and

� a chart cod : M → Ω such that for all x, x′ ∈ M ,

dM (x, x′) = ∥cod(x)− cod(x′)∥2.

Figure 9: The (in)famous Swiss roll is isometric to a 2-rectangle.
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Convergence of Isomap

Given a sample X ⊂ M , we write

ε = dH(M |X ) := sup
p∈M

min
y∈X

∥y − p∥2.

Theorem (Arias-Castro, Javanmard, and Pelletier 2020 )

Assume that M and ∂M are compact and C2 smooth with reach rch > 0, and that

M is isometric to a convex. Write z1, . . . , zn ∈ Rd for some (exact) embedding of

x1, . . . , xn ∈ M .

If ε ≲ r ≲ rch, then Isomap outputs points y1, . . . , yn ∈ Rd such that

min
Q∈O(Rd)

(
1

n

n∑
i=1

∥zi −Qyi∥22
)1/2

≲ max

{( r

rch

)2
,
(ε
r

)2}
.

Other results in Arias-Castro and Le Gouic 2019; Bernstein et al. 2000.
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Geodesic distance estimation

For all x, x′ ∈ X , write ∆r(x, x
′) for the geodesic distance between x and x′ in the

r-neighborhood graph of X , i.e. shortest path distance associated with the metric

δ(x, x′) =

∥x− x′∥2 if ∥x− x′∥2 ≤ r;

∞ otherwise.

Theorem (Arias-Castro and Le Gouic 2019)

If M is compact with reach bounded by rch, and ε ≤ r/4 with r ≤ crch, then for all

x, x′ ∈ X ,

(1 + Cr2)−1dM (x, x′) ≤ ∆r(x, x
′) ≤ (1 + 4ε/r)dM (x, x′).
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Locally Linear Embedding (LLE)

Locally Linear Embedding is an alternative to Isomap.

It originates from Roweis and Saul 2000.

Tends to preserve the geometry via barycentric coordinates.

Idea

� If the manifold is locally linear, we expect each data point to lie near a locally

linear patch of the manifold.

� Characterize each point yi as a convex linear combination of its k-nearest

neighbors.

� Build an embedding that preserves these weights.
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Locally Linear Embedding (LLE)

Step 1: Neighborhood. Find the neighbors Ni of each point.

Step 2: Barycentric coordinates. Compute weights W ∗ = (w∗
i,j)1≤i,j≤n that best

reconstruct the yi’s as convex sums of their neighbors.

W ∗ ∈ argmin
wi,j≥0∑
j wi,j=1

n∑
i=1

∥∥xi − ∑
j∈Ni

wi,jxj
∥∥2
2

Step 3: Embedding. Embed using the previously computed weights W ∗.

Rd ⊃ {y1, . . . , yn} ∈ argmin∑
i yi=0∑

i yiy
⊤
i =In×n

n∑
i=1

∥∥yi − ∑
j∈Ni

w∗
i,jyj

∥∥2
2
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Visualizing LLE

xi

xk

xj

Neighbors

Point of interest

Non-neighbors
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Visualizing LLE

yi
yk

yj

Neighbors

Point of interest

Non-neighbors

Fitted barycentric weights
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A Few Remarks

When computing weights:

W ∗ ∈ argmin
wi,j≥0∑
j wi,j=1

n∑
i=1

∥∥xi − ∑
j∈Ni

wi,jxj
∥∥2
2

� The loss and constraint are convex, with explicit optimum W ∗.

When embedding:

{y1, . . . , yn} ∈ argmin∑
i yi=0∑

i yiy
⊤
i =In×n

n∑
i=1

∥∥yi − ∑
j∈Ni

w∗
i,jyj

∥∥2
2

� The embedding is only defined up to arbitrary affine maps.

� Constraints
∑

i yi = 0 and
∑

i yiy
⊤
i = In×n for well-posedness.

� Explicit solution given by eigenvectors of (I −W )⊤(I −W ). 44



LLE Strengths & Weaknesses

As Isomap:

� Graph-base, spectral (eigenvector) method

� Polynomial time algorithm

� No local optima

� Non-iterative

� Single heuristic parameter (neighborhood size k)

� Can work with distances only

Additional weaknesses:

� Intrinsic dimension is an actual parameter

� Likely to tend to be a linear projector for large n (Goldberg and Ritov 2012; Wu

and Hu 2006)
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LLE Strengths & Weaknesses

Additional strengths:

� Better at handling non-convex parametrization domains

� Fast computations, taking advantage of the sparsity of

(In×n −W )⊤(In×n −W ).
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Related methods in MDS

LLE is reminiscent of MDS methods based on patches.

� FastMDS (Yang et al. 2006)

� split-and-combine MDS (Tzeng, Lu, and Li 2008)
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Convergence of LLE

Not much positive theoretical results known for LLE, because its performance depends

crucially on how W ∗ (not unique) is chosen.

Goldberg and Ritov 2012 prove the following convergence of Low-Dimensional

neighborhood Representation (LDR-LLE).

(= LLE with neighborhoods Ni = B(xi, r) and W ∗ minimizing ∥W∥2F)

Theorem (Goldberg and Ritov 2012, Theorem 3)

Assume that M = dec(Ω) is isometric to a convex and that X is a iid uniform

n-sample xi = dec(zi) from M . If nrd → ∞, and let ρ be such that ρ/r → 0, then,

1

n

∑
i

dist(zi,∂D)≥2r+ρ

max
j

∥zi−zj∥2<ρ

∥yi − yj∥22 = OP (ρ/r).
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